Adjacent vertex distinguishing edge coloring of the semistrong product of paths

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

adjacent vertex distinguishing acyclic edge coloring of the cartesian product of graphs

‎let $g$ be a graph and $chi^{prime}_{aa}(g)$ denotes the minimum number of colors required for an‎ ‎acyclic edge coloring of $g$ in which no two adjacent vertices are incident to edges colored with the same set of colors‎. ‎we prove a general bound for $chi^{prime}_{aa}(gsquare h)$ for any two graphs $g$ and $h$‎. ‎we also determine‎ ‎exact value of this parameter for the cartesian product of ...

متن کامل

Adjacent vertex-distinguishing edge coloring of graphs

An adjacent vertex-distinguishing edge coloring, or avd-coloring, of a graph G is a proper edge coloring of G such that no pair of adjacent vertices meets the same set of colors. Let mad(G) and ∆(G) denote the maximum average degree and the maximum degree of a graph G, respectively. In this paper, we prove that every graph G with ∆(G) ≥ 5 and mad(G) < 3− 2 ∆ can be avd-colored with ∆(G) + 1 col...

متن کامل

Adjacent Vertex Distinguishing Acyclic Edge Coloring of the Cartesian Product of Graphs

Let G be a graph and χaa(G) denotes the minimum number of colors required for an acyclic edge coloring of G in which no two adjacent vertices are incident to edges colored with the same set of colors. We prove a general bound for χaa(G□H) for any two graphs G and H. We also determine exact value of this parameter for the Cartesian product of two paths, Cartesian product of a path and a cycle, C...

متن کامل

Adjacent Vertex Distinguishing Edge-Colorings

An adjacent vertex distinguishing edge-coloring of a simple graph G is a proper edge-coloring of G such that no pair of adjacent vertices meets the same set of colors. The minimum number of colors χa(G) required to give G an adjacent vertex distinguishing coloring is studied for graphs with no isolated edge. We prove χa(G) ≤ 5 for such graphs with maximum degree Δ(G) = 3 and prove χa(G) ≤ Δ(G) ...

متن کامل

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2021

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/1738/1/012061